The extremal problem of Fourier coefficients of univalent harmonic mappings;
单叶调和映射傅立叶系数的极值问题
Under the necessary condition of an extremum of a continuous linear functional the least upper bound of Fourier coefficients of univalent harmonic mappings is obtained.
利用连续线性泛函取得极值的必要条件,得到关于单叶调和映射的傅立叶系数的上确界,推广了PeterDuren的研究方法。
In this paper, some properties of close-to-convex harmonic univalent mapping are discussed, and a criterion theorem for close-to-convex harmonic univalent mapping is given.
讨论了近于凸调和单叶映射的一些性质 ,并给出了近于凸调和单叶映射的判别法则 。
The extremal problem of Fréchet differential functionals for convex univalent harmonic mappings;
凸单叶调和映射的Fréchet可微泛函的极值问题
This paper puts forward BIFOLIATE map, which by fitting the mean-curve of the chaotic sequence, ensures its sequence approximately in the balance status when it varies the bifurcation parameter with finite precision.
文中提出了双叶映射,该映射通过对混沌序列的均值曲线的拟合,保证了在有限精度条件下进行变参数映射时序列的基本平衡,因此双叶映射容易产生平衡的混沌序列;理论分析与仿真结果表明,双叶数字混沌序列具有良好的平衡性和随机性,更高的保密性,等等,因此具有很高的参考价值和良好的应用前景。
There are geometrical deformations,named plane homography,between corresponding feature windows on different images of the same patch on scene surface.
不同视点图像中相应特征点邻域窗口之间存在几何上的透视畸变,这可用平面单应映射来表示,而目前大多匹配算法将该映射用仿射变换模型来近似,即用具有仿射不变性的特征进行图像的匹配。
There are geometrical deformations between corresponding feature windows on different images of the same scene sur- face,which can be represented by a homography on 2D plane.
不同视点图像中相应特征点邻域窗口之间存在几何上的透视畸变,这可以用平面单应映射来表示,而目前大多特征匹配算法将该映射用仿射变换模型来近似,即用具有仿射不变性的特征进行图像的匹配。
The homography between corresponding matching windows can be approximated by an affine model.
两幅图像中相应特征点邻域窗口之间的单应映射可以用仿射变换模型来近似。