For the radical function f(z)=n[]p(z)(where p(z) is a polynomial of degree N) with multi-branch points,this paper obtains a general method to get the function value on the given branch of analytic function.
对于具有多个有限支点的根式函数f(z)=np(z)(其中p(z)是任意的N次多项式),得到了求某个特定单值解析分支上的函数值的一般方法。
For clarifying the relation between single valued component of multiform function and cutline of component and for easily determining the changed quantity of argument,an example is analysed to show that there is a certain relation between the division of multiform function and the selection of the cutline of component.
为了阐明多值函数的单值支与支割线的关系和容易地确定多值函数的幅角改变量,通过对一道例题的剖析,指出多值函数的单值支的分法与支割线的选法有关,并给出了一种简单、实用的确定多值函数幅角改变量的几何方法。
The ramification values of nonlinear algebraic mapping dynamic system are studied, and a novel high precision algorithm of dimidiate reducing ramification values is proposed.
研究了非线性代数映射动力系统分支值确定问题,提出二分缩减确定分支值的高精度新算法·克服了步长增量法由于细化步长造成计算时间较长的问题,解决了分支值优化算法由于目标函数本身构成产生较大计算误差的弱点·通过对典型的Logistic映射算例的倍周期分支值编程分析计算,给出误差限为10-10精确的分支值·这种算法既节省计算时间又具有高的计算精度·该方法为非线性系统与混沌特性研究提供了条件
?The accurate computation for getting ramification of algebra iterated system was studied by the analysis of the double period bifurcation of Logistic dynamic mapping system with ecological characteristic.
以代数迭代映射动力系统的倍周期分叉问题为背景,研究出较精确计算代数迭代系统分支值的优化方法·以分支值为设计变量,映射点的最大开口量为目标函数,以映射点周期关系为等式约束和分支值分布范围为不等式约束,建立了关于分支值计算的新方法·通过两个代数迭代系统分支值实例分析计算,获得较高精度的结果
Bycomparison of the real analysis and the complex analysis,we give a method of cutting out the univalent branch of the many-valued complex funcion.
本文通过实分析与复分析的对比 ,给出了多值的复变函数分割出单叶分支的方法。