The factorization of odd prime in the quartic field was discussed and the roots of Fa(x) and its Galois group were chased down.
首先确定了四次方程Fa(x)=x4+2(1-a)x2+(1+a)2在Z[x]中可约的充要条件;然后在Fa(x)不可约的前提下,当p为奇素元且p不整除D(f)时,D(f)为Fa(x)的判别式;最后详细论述了p在Fa(x)的根所确定的四次域中的分解情况,并且找出了Fa(x)的根系及它所确定的伽罗瓦群。
This paper illustrates the concept of four valued quantum qubit and four valued quantum logic based on Galois field.
为此引入多值逻辑,研究四值量子逻辑系统,主要论述了基于伽罗瓦域的四值量子比特和四值量子逻辑系统。
This signature function is defined in Galois field (GF).
为了降低开销 ,提出了一种新的用于控制流错误检测的信号函数 ,该信号函数定义于伽罗瓦域中 。
Galois’s mathematical research in the Journal de mathématiques pures et appliqués founded by himself.
1846年,刘维尔在自己主办的杂志“纯粹与应用数学杂志”首次出版了伽罗瓦的数学研究,这对于伽罗瓦理论的传播与发展是具有决定意义的事件。