On Hom functor over semimodules;
关于半模上的Hom函子
Finally, The left Exactness of Hom Functor was proved.
给出模糊半环上模糊半模(即F_R~A-半模)正和列,复合列的定义,讨论了半模正合列与F_R~A-半模正合列的关系,最后证明了F_R~A-半模范畴中Hom函子的保左复合性。
This paper discusses the homotopy adjoint property of tensor product functor _RY and the hom functor hom_s(Y,-) in the categories of complexes.
主要讨论了复形范畴的张量积函子与hom函子的同伦伴随性,并且给出了同伦正则正向极限的定义,证明了复形范畴的张量积函子保持这种极限。
The concepts of R-smod and FARsmod were introduced and the relation between R-smod and FAR-smod was discussed by a contravariant functor S and a covariant functor t.
本文从范畴角度研究模糊半环上的模糊半模,首先给出了半环上的半模范畴(即R-smod)及模糊半环上的模糊半模范畴(即FRA-smod)的定义,然后通过反变函子s及共变函子t建立R-smod与FAR-smod之间的关系,最后证明了FAR-smod是一个半加法范畴。
According to the notion of Hom-associative algebra,firstly we define the new notions of Sub-hom-comodule and Hom-comodule morphism,then investigate some fundamental properties of them.
根据Hom-结合代数的概念来新定义子Hom-余模、Hom-模同态、Hom-余模同态的概念,并进一步讨论它们的基本性质。