In this paper an induced connection in the Finsler bundle and an induced nonlinear connection in the tangent bundle of a subspace of a Finsler space are derived by using the metric tensor of the Finsler space.
讨论了Finsler空间的度量张量,得到其子空间的Finsler丛中的诱导联络和子空间的切丛中的诱导非线性联络,从而得到Finsler空间上的任意Finsler联络在其子空间上的诱导Finsler联络。
In this thesis, by the existence of the nonholonomic connection of nonintegral distribution, we prove the existence and uniqueness of the sub-Riemannian connection and extend some results of classical transform to notions of sub-Riemannian manifolds.
首先,利用给定流形的向量丛上联络的存在性给出流形上的不可积分布上非完整联络的存在性证明,进而证明了次黎曼联络的存在唯一性,并以此为出发点研究了次黎曼流形中仿射变换、等距变换、共形变换和射影变换下的一些不变性质,给出了相应变换下的一些不变量。