您的位置:汉字大全 > 行业英语 > 数学 > nonlinear partial differential equation是什么意思

nonlinear partial differential equation是什么意思

中文翻译非线性偏微分方程

网络释义

1)nonlinear partial differential equation,非线性偏微分方程2)Nonlinear partial differential equations,非线性偏微分方程3)Non-linear partial differential equations,非线性偏微分方程4)non-linear partial differential equation,非线性偏微分方程5)nonlinear system of partial differential equations,非线性偏微分微方程组6)nonlinear partial integral differential equation,非线性偏积分微分方程

用法例句

    Classification of Bcklund transformations among second-order nonlinear partial differential equations;

    二阶非线性偏微分方程之间Bcklund变换的分类

    Based on the Homogeneous Balance Method,four methods to find exact traveling wave solutions of nonlinear partial differential equations are proposed by using trigonometric functions,hyperbolic functions and Mathematica software.

    基于齐次平衡法的思想,借助数学软件"Mathematia",利用三角函数、双曲函数和吴消元法建立了四种寻找非线性偏微分方程行波解的方法,方法的基本原理是通过一些特殊的变换,将求方程行波解的问题转化为求代数方程的解问题,并且以复合KdV方程作为例子,介绍了方法及其步骤。

    By utilizing the trial function method, a class of nonlinear partial differential equations (PDEs for short) that are hard to be solved by the usual ways can be reduced to a set of algebraic equations, which can be easily solved, and their related coefficients can be easily determined by the undetermined coefficients method.

    利用试探函数法,将一个难于求解的非线性偏微分方程化为一个易于求解的代数方程,然后用待定系数法确定相应的常数,简洁地求得了一类非线性偏微分方程的精确解。

    A simple fast method in finding the analytical solutions to a class of nonlinear partial differential equations;

    求一类非线性偏微分方程解析解的一种简洁方法

    This method can also be used to solve other nonlinear partial differential equations.

    引入一个变换,将二阶非线性偏微分方程—Burgers方程降阶为一阶的非线性方程,再直接求解该方程,得出了Burgers方程精确解的新形式,并与已有结果完全吻合。

    Recently, the LBM have been developed to simulate linear and nonlinear partial differential equations (NPDEs).

    近年来,LBM在模拟线性和非线性偏微分方程方面取得了重要进展,但是理论部分仍有许多问题有待完善,例如如何构造出精度较高的模型和如何模拟更复杂的非线性偏微分方程

    Bifurcations of Travelling Wave Solutions for A Class of Nonlinear Partial Differential Equations

    一类非线性偏微分方程行波解的分支

    Domain Wall Waves of the Cubic Nonlinear Equation;

    一个三阶非线性偏微分方程的域墙波

    New Exact Solutions of Two Kinds of Nonlinear Partial Differential Equations

    两类非线性偏微分方程的新的精确解

    Simulation of Lattice BGK Models for Some Nonlinear Partial Differential Equations

    若干非线性偏微分方程的格子BGK模拟

    The Miura transformation between nonlinear partial differential equations

    非线性偏微分方程之间的Miura变换

    NONCLASSICAL SYMMETRIES AND SIMILARITY SOLUTIONS OF SOME NONLINEAR PARTIAL DIFFERENTIAL EQUATIONS

    几个非线性偏微分方程的非古典对称及相似解

    RKMK Geometric Integration of Non-linear Partial Differential Equations;

    非线性偏微分方程的PKMK型几何积分方法

    The Method of Rational Expansion for Finding Exact Solutions of the Nonlinear Partial Differential Equations;

    非线性偏微分方程精确解的有理展开方法

    Application of Invariant Subspace Method to Nonlinear Partial Differential Equations

    不变子空间方法在非线性偏微分方程中的应用

    Study on Solving Methods and Properties of Solutions for Several Kinds of Nonlinear PDEs;

    几类非线性偏微分方程解法及解的性质的探讨

    The Study on the Property and Exact Solutions for Nonlinear Partial Differential Equations;

    非线性偏微分方程的Painlevé性质及其精确解的推导

    Study on Integrable Properties for Two Kinds of Variable-coefficient Nonlinear Partial Differential Equations;

    两类变系数非线性偏微分方程的可积性质研究

    On the Initial-boundary Value Problem for the Nonlinear Partial Differential Equation with Integral Term;

    一类具积分项非线性偏微分方程的初边值问题

    Several Finite Difference Schemes for a Family of Nonlinear PDES;

    一类非线性偏微分方程的若干有限差分格式

    Analysis & Application to Some Methods for Solving Nonlinear Partial Differential Equations;

    非线性偏微分方程若干解法分析与应用

    Group-invariant Solutions and Group Classification of Nonlinear Partial Differential Equations;

    非线性偏微分方程的群不变解和群分类

    Maximum Principles and Blow-up of Solutions for Nonlinear Partial Differential Equations;

    非线性偏微分方程的极大原理和解的爆破

    The Jacobi Elliptic Function Solutions for Several Nonlinear Partial Differential Equations;

    几种非线性偏微分方程的Jacobi椭圆函数解

Copyright © 2022-2024 汉字大全www.hanzidaquan.com All Rights Reserved 浙ICP备20019715号