您的位置:汉字大全 > 行业英语 > 数学 > irreflexively partially ordered set是什么意思

irreflexively partially ordered set是什么意思

中文翻译非自反半序集

网络释义

1)irreflexively partially ordered set,非自反半序集2)reflexively partially ordered set,自反半序集3)partially ordered set,半序集4)semi-ordered set,半序集5)semiordered set,半序集6)cac poset,cac半序集

用法例句

    There are a variety of known ways in which a partially ordered set P may be given a convergence.

    在一个半序集中可以定义网的各种序收敛,本文讨论一个半序集P及其分割完备化?中序收敛的关系、P及其强收缩中序收敛的关系,以及直积中的序收敛。

    Basing on some characteristics of supremum and order convergence, a corollary of Zorn lemma is given in partially ordered set.

    通过上确界及序列收敛的有关性质 ,给出了半序集上 Zorn引理的一个推

    The existence of the minimal and maximal fixed points for order preserving set-valued operators on semi-ordered sets and semi-ordered topological spaces was analyzed.

    讨论了半序集和半序拓扑空间中保序集值算子的最小与最大不动点的存在性。

    By introducing the concepts of the totally ordered quasicomplete set and totally ordered self-complete set in this paper, some existence theorems of coupled fixed point for mixed monotone mappings in semi-ordered set and its application are given.

    本文通过引入全序拟备集和全序自备集概念,给出了半序集上混合单调映象的耦合不动点的若干存在性定理及其应用,它们包含半序Banach空间和半序拓扑空间上的许多相应结果作为特例。

    In this paper,some definitions of the mixed monotonicity for set-valued operators in semiordered set are introduced and relation of monotonicities are discussed.

    给出了半序集上集值算子的几种混合单调性定义 ,讨论了它们之间的关系 。

    Then using some propertis of the total ordered subset in semiordered set, the existence theorems of coupled fixed points and minimax coupled fixed points for mixed monotone set valued operators are given.

    引入了集值算子的几种混合单调性定义 ,讨论了各种单调性之间的关系 然后利用半序集上的全序子集的某些性质 ,给出了混合单调集值算子的耦合不动点和极小极大耦合不动点的存在性定理 。

    By introducing the concepts of the lower increasing,upperincreasing ,total increasing and strong increasing for set valued operators and the concepts of totally ordered quasi complete set and totally self complete set in semiordered set ,the existence of fixed point for the set valued increasing operators composed of a single valued operator and a set valued operator is discussed.

    通过引入集值算子的下增、上增、全增、强增和半序集上的全序拟备集、全序自备集等概念,讨论了由单值算子与集值算子复合而成的集值增算子的不动点的存在性,改进和推广了已有文献的某些结

    It is proved that if P is a cac poset, then D(P)={x∈P :there is a  maximal element y such as xy}=P .

    证明了若 P是 cac半序集 ,则 D( P) ={x∈ P:存在 -极大元 y,满足 y x}=P,并对李伯渝的论文“The anti- order for caccc posets”( DiscreteMathematics,1 996,1 58:1 73- 1 84)的结论和证明作了简

    THE BUMP-NUMBER AND THE DLG ALGORITHM FOR THE POSET

    半序集的碰撞数与分层深度贪婪算法

    New Fixed Points of Weakly Sequentially Continuous Semi-closed 1-Set Contraction Mappings

    弱序列连续的半闭1-集压缩映射的新不动点

    field sequential system

    场序制, 半帧序制

    On l-Archimedean ordered semigroup

    关于l-Archimedean序半群

    SAPCHE (Semi-Automatic Program Checkout Equipment)

    半自动程序检验装置

    Amenably ∨-semilattice-ordered generalized inverse semigroup

    Amenable上半格序广义逆群

    On L-Trivial Green’s Relations in Ordered Semigroups

    序半群的左平凡Green’s关系

    The Fine-coare Partial Order of Proximity Structures on a Given Psendocomplemented Lattice;

    伪补格上半Proximity结构的精粗半序

    The maximal regular subsemigroups of singular order-preserving transformation semigroups

    奇异保序变换半群的极大正则子半群

    Removal of an assembly from the global assembly cache failed:

    从全局程序集缓存中移除程序集失败:

    The Scott Topology on Posets and Continuous Posets

    偏序集和连续偏序集上的Scott拓扑(英文)

    Aubry-Mather Sets for Semilinear Duffing Equations

    半线性Duffing方程的Aubry-Mather集

    Bi-filters, Bi-ideal subsets and semilattice deco mpositions of semigroups

    双滤子、双理想子集与半群的半格分解

    Here we have half-finished jobs, loose ends, all glaringly obvious in their collective ugliness.

    有头无尾的,半半拉拉的,都集体亮丑。

    Could not find dependent assemblies for assembly '%1'. The assembly manifest may be corrupt.

    未能找到程序集“%1”的依赖程序集。程序集清单可能已损坏。

    The cluster network provider is not valid.

    群集网络提供程序无效。

    mask programmable integration

    掩模可编程序集成电路

    scheduler work area data set

    调度程序工作区数据集

Copyright © 2022-2024 汉字大全www.hanzidaquan.com All Rights Reserved 浙ICP备20019715号