With the Ben Tal generalized algebraic operation of 2 , we obtained some necessary and sufficient conditions for the class of generalized convex programming, and the results generalize the corresponding ones for the convex Programming.
本文讨论了由一类(h,φ)-凸函数所构成的广义凸规划的最优性条件。
Under certain asumptions,optimality sufficient conditions of generalized convex programming problems are presented.
本文利用广义Ben-Tal代数运算,提出了几类广义(h,φ)-凸函数的定义,并在一定的假设条件下,讨论和得到了一类广义凸规划的最优性充分条件。
In this paper, we put forward biconcave programming problem and generalized concave programming problem more generally.
在本文中 ,我们提出了双凹规划问题和更一般的广义凹规划问题 。
A note on necessary optimality conditions for a class of generalized fractional programming;
一类广义分式规划最优性必要条件的注记
Saddle-point type optimality criteria for a class of generalized fractional programming with B-(p,r)-invexity functions;
B-(p,r)-不变凸性下广义分式规划的鞍点存在性定理
Saddle point optimality criteria for generalized fractional programming;
广义分式规划的鞍点最优性准则
A linearization method for global solution of generalized geometric programming;
求广义几何规划全局最优解的线性化方法
A rapidly convergent algorithm is developed for the equality and inequality constrained generalized geometric programming.
建立带等式与不等式约束的广义几何规划一个新的快速收敛算法,算法的搜索方向由一个二次规划和一个线性方程组的解产生,效益函数为广义精确罚函数。
In this paper a linearization method is proposed for locating the global minimum of the generalized geometric programming(GGP),which can be applied to engineering designs and robust stability analysis of nonlinear systems.
对广泛应用于工程设计、非线性系统鲁棒稳定性分析中的广义几何规划问题(GGP)提出一线性化求解方法。
This thesis presents the combination of the stochastic programming and generalized goal programming.
结合随机规划和广义目标规划,提出了几种具有随机参数的广义目标规划模型──随机广义目标规划,并对其算法进行了探讨。
Neural network for the extended quadratic programming problem;
解广义二次规划的神经网络
A THEOREM OF THE ALTERNATIVE AND ITS APPLICATION TO THE GENERAL CONVEX PROGRAMMING;
一个择一定理及对广义凸规划的应用
Some Theories for the Generalized Convexity Programming and Algoeithm Research of Constrained Linear Complementrity;
关于广义凸规划和约束线性互补问题的若干理论及算法研究
The optimality conditions of the multi objective programming under generation B-subconvex functions
广义B-次凸多目标规划的最优性条件
Optimization Condition Research of Multiobjective Programming under Generalized;
多目标规划在广义凸性下的最优性条件的研究
The Research of the Theory on Generalized Invex Functions and Multiobjective Programming;
广义不变凸函数与多目标规划的理论研究
Optimality conditions for a class of nonsmooth generalized convex multiobjective programming
一类非光滑广义凸多目标规划的最优性条件
The Properties and Applications of Several Classes of Generalized Convex Functions and Convexification, Concavification Method for Monotone Optimization;
几类广义凸函数的性质和应用及单调规划的凸化、凹化方法
Effciency Conditions and Duality for a Class of Multiobjective Fractional Programming Problems;
一类广义凸多目标分式规划问题的有效性条件及对偶
Optimality Condition and Duality Results for a Class of Multi-objective Fractional Programming Problems with Generalized Convexity;
广义凸性条件下一类多目标分式规划问题的最优性条件和对偶
Optimality conditions for generalized K-(F,a,p,d)convex semi-infinite programming problem;
一类广义K-(F,a,ρ,d)-凸半无限规划问题的最优性条件
Sufficient efficiency conditions of multiobjective fractional programming problems under the generalized(F,α,ρ,θ)-V-convex;
广义(F,α,ρ,θ)-V-凸多目标分式规划的有效性条件
WEAK GENERALIZED LAGRANGE SADDLE POINT FOR THE NONSMOOTH MULTIPLE OBJECTIVE FRACTIONAL PROGRAMMING WITH G-(F,ρ) CONVEXITY;
G-(F,ρ)凸性下的非光滑多目标分式规划弱广义Lagrange鞍点
THE DUALITY OF MULTI-OBJECTIVE PROGRAMMING INVOLVING GENERALIZED (F,α,ρ,d)-CONVEXITY;
广义(F,α,ρ,d)-凸性下一类多目标规划问题的对偶
K-T conditions and duality for multiobjective fractional programming under generalized(F,α,ρ,d)-convex;
广义(F,α,ρ,d)-凸性条件下多目标分式规划问题的K-T条件及对偶
THE SUFFICIENT OPTIMALITY CONDITIONS OF MULTI-OBJECTIVE PROGRAMMING ON THE GENERALIZED (F,α,ρ,d)-CONVEXITY;
广义(F,α,ρ,d)-凸条件下的多目标规划的最优性充分条件
Optimality conditions for multi-objective fractional programming with a new formulation of generalized convexity
一种新广义凸多目标分式规划的最优性充分条件
Optimality Conditions and Duality for a Class of Generalized Convex Multi-objective Fractional Programming Problems
一类广义凸多目标分式规划的最优性条件和对偶
Optimality criteria for a class of generalized fractional programming under nonsmooth(F,ρ,θ)-d-univexity
非光滑(F,ρ,θ)-d一致不变凸广义分式规划的最优性条件