In the paper,use some results about the asympotic formula of the partical sum of Hurwitz zeta-function,which comes from Kanemitsu S,kumagai H,Srivastava H M and Yoshinoto M,and then get anasympotic expansion about the differential quotient sum of Digamma-function by Elementary method and analytic methods.
主要运用了Kanemitsu S,kumagai H,Srivastava HM和Yoshinoto M的一些关于赫尔维茨ζ函数部分和渐近公式,采用初等及解析方法研究得出了一个双Γ函数导数和的完全渐近展开式,作为推论,又得到了几个特殊结果。
Party sum of ζ function about modulus q was been researched, not only get a important asymptotic formula, but also derive Kubert identities for the Hurwitz zeta-function, Euler digamma function and Bernoulli polynomials.
主要研究了ζ函数关于模q剩余类部分和,不仅得出了一个重要的渐近公式,而且将Kubert恒等式推广到赫尔维茨ζ函数、欧拉双Γ函数和贝努利多项式上。