In the paper, the author discusses the relationship between local C-groups and local C-semigroups as well as some basic properties of local C-groups whose generators may not be densely defined.
在本文中我们讨论了生成元非稠定时局部C群与局部半群的关系及一些基本性质 ,并获得局部C群的生成定理。
In this paper we investigate algebraic properties of the set of local formations which satisfy N , and for such formation we give the structure of minimal non group.
本文研究了满足条件N 的局部群系集合的代数性质,同时对于这类群类 ,给出了极小非 -群的结构。
Based on the formation theory and by use of the weak quasi-normality of certain subgroups of a finite group,some of the sufficient conditions for local formations and saturated formations that contain supersolvable groups are obtained.
从群系理论出发,利用有限群的某些子群弱拟正规性,得到了局部群系和包含超可解群类的饱和群系的一些充分条件。
In most cases, a p-local subgroup is solvable or p-solvable.
局部分析方法是有限群理论最基本的方法,它在有限单群分类定理中起了十分重要的作用,在很多情况下,p-局部子群是可解的或p-可解的,其中一个行之有效的方法是将给定的有限群分解为具有某些特定性质的子群的乘积。
LetG be a locally compact group,and B (G )be the Fourier-Stieltjes algebra of G .
设G是一个局部紧群, B (G )是群G的Fourier-Stieltjes代数。