In this paper,we characterize some kinds of rings through the divisiblity and continuability of the divisible modules.
利用可除模的可除性和延拓性,展开了可除模对一些环的刻画。
The important cases of divisible submodule and pure submodule are explored and some corollaries are gotten.
文中考虑了可除子模和纯子模的重要情形,并得出一些推论。
In the paper,firstly,it study some properties of τ-codivisible module that are dual to τ-injective module;Secondly,it study relatively semisimple rings and left hereditary rings by τ-codivisible module.
首先研究了τ-余可除模的性质,揭示了τ-余可除模与τ-内射模是完全对偶的概念;其次利用τ-余可除模研究了相对于挠理论τ半单环、左遗传环的结构。