您的位置:汉字大全 > 行业英语 > 数学 > constructible map是什么意思

constructible map是什么意思

中文翻译可构成映射

网络释义

1)constructible map,可构成映射2)visibility map(VMap),可视映射3)descendible mapping,可降映射4)Descendable mapping,可降映射5)additive map,可加映射6)additive mapping,可加映射

用法例句

    The chaotic set and asymptotic periodic point of descendible mapping;

    可降映射的混沌集与渐近周期点

    If is a n-dimensional descendible continuous self-mapping, the necessary and sufficient conditions are given to f which is of n-dimensional self-mapping with its square to be of type 2∞ by using the feature of descendible mapping,as well as itsRf\R(f) being countable.

    若f是可降的n维自映射,则可利用可降映射的特征,给出这类n维自映射是2∞型映射的又一充要条件,R(f)/R(f)为可数集。

    If f is a n-dimensional descendible continuous self-mapping,the characters of descendible mapping can be used.

    若f是可降的n维自映射,则可以利用可降映射的特征,给出了这类自映射无异状点的一个充要条件,当f限制在周期点集上时,是等度连续的。

    Some Dynamical Properties of Descendable mappings.;

    可降映射的一些动力学性质

    Let f∈C 0(I×I,I×I) ,if f is descendable mapping and has no abnormal point, Using character of descendable mapping and Cartesian product and closure operation, one_dimensional self_mapping is extended to two_dimensional self_mapping.

    设f∈C0 (I×I,I×I) ,如果f是可降映射 ,又f无异状点 ,利用可降映射的特征和笛卡尔积及其闭包运算 ,将一维自映射的情形向二维自映射进行推广 ,并给出了这类自映射的中心和深度 ,即f的中心为P(f) ,f的深度为 1或 2。

    Suppose thatΦ:A→A is an additive map and m,n are positive integers.

    设Φ:■→■是可加映射。

    Using the additivity of the matrix,it is proved that every additive map preserving the lattices of invariant subspaces is of the form:Φ(A)=αA+φ(A)I(A∈Tn),where α is a nonzero scalar,φ:TnF is an additive map and I∈Tn is an identity.

    利用矩阵的可加性,证明了Tn上的每一个保不变子空间格的可加映射Φ为:Φ(A)=αA+φ(A)I(A∈Tn),其中α是非零常数,φ∶Tn→F是可加映射,I∈Tn是单位算子。

    The form of each additive map φ:M→B(X) is proved that if there exist nonzero real m and n such that (m+n)φ(A2)-mAφ(A)-nφ(A)A ∈FI holds for all A ∈ M, then φ(A)=λA , where λ ∈F.

    证明了若可加映射φ:M→B(X)满足A∈M,非零实数m和n,有(m+n)φ(A2)-mAφ(A)-nφ(A)A∈FI。

    A note on the linearity of an additive mapping;

    关于可加映射线性性质的注记(英文)

    We study in this paper the structure of additive mappings on triangular matrix algebras which preserve commutativity.

    本文研究了三角矩阵代数上保持交换性的可加映射的结构。

    The minimality,topological transitivity and topological mixing of descendible mapping;

    可降映射的极小性、拓扑传递性、拓扑混合性

    Research on Derivable Mappings, Anti-derivable Mappings and Commuting Mappings;

    关于可导映射、反可导映射和交换映射的研究

    theory of singularities of differentiable mappings

    可微映射的奇点理论

    Choose Use existing map to see the ready-made maps available to you.

    选择“使用现有映射”可以查看您可用的预置映射。

    Derivable and Anti-derivable Linear Mappings on Von Neumann Algebra;

    Von Neumann代数上的可导和反可导线性映射

    The existence and uniqueness of additive selection for (α,β)-(β,α) type subadditive set valued maps

    (α,β)-(β,α)型次可加集值映射的可加选择映射的存在唯一性

    Search for Selected Mapping to Reduce PAPR in MC-CDMA System;

    选择性映射降低MC-CDMA系统峰均功率比的研究

    Research on Reducing Papr Based on Constellation Mapping in OFDM System

    基于星座映射法降低OFDM系统峰均功率比的研究

    Research on Selected Mapping to Reduce PAPR in OFDM System

    选择性映射降低OFDM系统峰均功率比研究

    Peak-to-Average Power Ratio Reduction in MIMO-OFDM Systems Based on Decomposed Selected Mapping

    基于分解选择映射的MIMO-OFDM系统峰均比降低算法

    Mapping Theorems on Submeocompact Spaces and Expansive Maps on Non-compact Metric Spaces;

    关于submeso紧空间的映射定理和非紧度量空间上的可扩映射

    Internal error: Field mapping is not available (can't find module)

    内部错误: 字段映射不可用 (未发现模块)

    You can map global variables to input parameters.

    可以将全局变量映射到输入参数。

    Additivity of Jordan Maps and Biderivations on Nest Subalgebras;

    套子代数上Jordan映射的可加性及双导子

    Research on Image Encryption Algorithms Based on Invertible Maps;

    基于可逆映射的图像加密算法的研究

    On the Hyers-Ulam Stability of the Linear Mapping on a restricted domain;

    限制域上可加映射的Hyers-Ulam稳定性

    Polynomial Maps with Additive-nilpotent Jacobian Matrix

    带有可加幂零Jacobi矩阵的多项式映射

    Generalized Lie Derivable Mappings at The Piont Zero on Nest Algebras

    套代数上的零点广义Lie可导映射

Copyright © 2022-2024 汉字大全www.hanzidaquan.com All Rights Reserved 浙ICP备20019715号