In this paper,the singular problems are solved by using the character of Hilbert Space and modifying Broyden s method.
利用H ilbert空间几何特征,修正了Broyden求解奇异问题的方法。
In this dissertation, the theory of the Jacobi spectral methods and their applications to singular problems, unbounded domains and axisymmetric domains are studied.
已有的谱方法多适应于有界区域上的非奇异问题,但许多实际问题是奇异问题或无界区域问题。
Using the expansion of walsh series we give a new method of how to solve the singular optimal control in finite interval.
利用Walsh级数的分析特性讨论了有限区间上奇异LQ问题的解法。