Based on the paper by JonG WON LEE,a new method to calculate the number of the isomorphism classes of Picard cuvers defined over finite fields is given ,and a simplified proving procedure is proposed.
文中基于JONG WON LEE的一文[11],对有限域上特征≠2,3的Picard曲线同构类作了系统的分析且简化了证明过程。
Schoof obtained a formula for the number of isomorphism classes of elliptic curves over the finite field F_q.
Schoof对于有限域Fq上的椭圆曲线的同构类数目得出了一个公式。
This paper discusses the relation beween order classification and isomorphic classification, gives some important characteristic properties of a cyclic group with order n and a important property of a p-group with finite order, introduces two factorization method of direct product for commutative p-group with finite order, presents some new problems.
讨论了阶分类与同构分类的关系,给出了n阶循环群的几个重要的特征性质和有限p-群的一个重要性质,介绍了有限交换p-群直积分解的两种方法,提出了一些新的问题。
This paper gives their isomorphism classification and selects a complete set of representatives.
给出了加群为初等 p群的 p4 阶有限结合环即域 Fp上四维结合代数的同构分类 ,选出了一个全体代表团 ,是为 p4 阶有限结合环的同构分类之三 ,方法是利用较低阶环的已知分类 ,并对非幂零情形籍助关于可离代数的 Wedderburn主定理与表示模理论 ,而对r=3的幂零情形还籍助于矩阵分类概念之发展 。
If f(n) is the number of isomorphism classes of groups with n order, for a given integer k, then to find the integer n satisfied with f(n)=k is said to gain a solution of the equation f(n)=k.
对群计数公式的研究是有限群理论中有着重大意义的问题,设f(n)是n阶群的同构类数目,对于给定的整数k,去寻找满足f(n)=k的整数n,叫做求方程f(n)=k的解。