To determine the stable homotopy groups of spheres is not only one of the central problems in homotopy theory,but also a very difficult problem.
决定球面稳定同伦群是同伦中的一个中心问题,同时也是非常困难的问题之一。
The paper studies the nontriviality of homotopy elements β_2γ_s in the stable homotopy of spheres.
本文研究了球面稳定同伦中同伦元素β2γs的非平凡性。
This paper proves the existence of a new family of nontrivial homotopy elements in the stable homotopy of spheres which is of degree 2(p-1)(sp 2+(s+1)p+(s-2))-6 and is represented by b 0h 1 s in the E s+3,* 2 -term of the Adams spectral sequence,where p≥7 is an odd prime,3≤s<p.
证明在Adams谱序列中 ,积b0 h1 γs∈Exts + 3 ,sp2 q + (s+ 1)pq+ (s-2 )q + (s-3 )A (Zp,Zp)收敛到球面稳定同伦群π S中的一个新的非零的稳定元素族 ,其中 3≤s
In this thesis,a class of isoparametric hypersurfaces in the Lorentzian sphere S51 are studied.
研究(5维洛伦兹球面)中的Ⅲ型洛伦兹等参超曲面。
In this thesis, Lorentzian isoparametric hypersurfaces in the Lorentzian sphere S_1~(n+1) are studied.
本文研究洛伦兹球面S_1~(n+1)中的Ⅱ型洛伦兹等参超曲面。
Isoparametric Hypersurfaces of Type Ⅲ in the Lorentzian Spheres;
洛伦兹球面中的Ⅲ型洛伦兹等参超曲面
Lorentzian Isoparametric Hypersurfaces of Type Ⅱ in Lorentzian Spheres;
洛伦兹球面中的Ⅱ型洛伦兹等参超曲面
Lorentz-Lorenz equation
洛伦兹-洛伦茨方程
lorenz lorentz's formula
洛伦茨 洛伦兹公式
Cartan Identity of I-type Lorentzian Iso Parametric Hypersurface In Lorentzian Space Form S_1~(n+1);
洛伦兹空间型S_1~(n+1)中的Ⅰ型洛伦兹等参超曲面的Cartan等式
Cartan Identity of II-type Lorentzian Isoparametric Hypersurface in Lorentzian Space Form S_1~(n+1)
洛伦兹空间型S_1~(n+1)中的Ⅱ型洛伦兹等参超曲面的Cartan恒等式
Type IV Lorentzian Isoparametric Hypersurface in;
R_1~(n+1)中的型洛伦兹等参超曲面
Lorentz-Boltzmann equation
洛伦兹-玻耳兹曼方程
Umbilical Lorentzian Isoparametric Hypersurfaces of Type II in S_1~(n+1)
S_1~(n+1)中的Ⅱ型全脐洛伦兹等参超曲面
Lorentz-Heaviside system
洛伦兹-海维西特单位制
hyperbolic form of Lorentz transformation
洛伦兹变换的双曲形式
Lorentz line-splitting theory
洛伦兹谱线劈裂理论
heaviside lorentz's system of units
亥维赛洛伦兹单位制
lorentz invariant momentum space
洛伦兹不变动量空间
Lorentz invariant electromagnetic mass
洛伦兹不变电磁质量
Lorentz-Lorenz molar refraction
洛伦兹-洛伦茨摩尔折射率
We shall discuss several of them below with the help of the Lorentz transformation.
下面,我们借助于洛伦兹变换来讨论其中的几个结果。
The Transformation Equations of Electromagnetic Field from the Formula of Lorents Force;
从洛伦兹力公式导出电磁场变换方程