The fuzzy mapping is given based on the concept of fuzzy equivalent,and fuzzy homomorphism of groups and characteristics in this mapping state are discussed.
利用模糊相等关系下的模糊映射,讨论了在此映射下群的模糊同态及其有关性质。
With the dot product, a Z-module homomorphism η: E→Z m is defined, where E is a submodule of Z n m, kerη,E/kerη and some properties of η -1 are presented in the paper.
利用点积定义了Znm 的任意一个Zm-子模E到Zm 的模同态η ,求出了 η的核kerη、给出了E/kerη中元素的具体表示以及η-1的一些性质 ;同时还利用点积定义了Znm→Zkm(1 k n)的模同态 ρ ,求出了 ρ的核kerρ以及Znm/kerρ,讨论了 ρ-1的有关性质 。