The exterior differential form was pointed out to be the mathematical model of a lot of proposition in field theory.
建立了外微分理论与场论之间的一些对应法则,指出外微分形式是场论中众多命题的数学模型,得到用外微分运算解决场论中梯度、旋度、散度以及环量与通量的计算和几种重要的矢量场:梯度场、旋度场、调和场证明的新方法。
Thenecessity and urgency were discussed that exterior differential form and some content of mordenmathematics were introduced in teaching.
对当前高等数学课教学内容严重滞后的现状作了系统分析,论述了在教学中引入外微分形式及当代数学部分内容的必要性和紧迫性。
This paper introduces the concept of Finslerian exterior differential form and two exterior differential operators dh,dv,which are different from the general theory of Cartan s.
本文提出了一种与加当外微分法不同,但适用于芬斯拉几何的外微分理论,包括芬斯拉外微分形式与两个外微分算子dh,dv。
This paper use the exterior product and exterior differential forms to treat the proceeding problem.
该文充分利用外微分形式的特殊性质,巧妙地计算了几个重要的Jacobi行列式,并且给出了众多文献都引用了但都没有给出证明的变换Y=X'DX的Jacobi行列式利用MuIrhead提出的外微分方法计算了几个重要的Jacobi行列式。
Lastly,we concluded with the correctness of Stokes formula for differential forms with compact support.
本文通过orbifold在一点附近的性质导出了带边区域的定义,还具体的构造出orbifold上的外微分形式丛,最后证明了对orbifold上的紧支集外微分形式Stokes公式成立。
The above conclusion is demonstrated in the light of poincare theorem, it is demonstrated by using contraction (interior product) of vector field and differential form as well as operation of exterior differentiation.
运用向量场与微分形式的缩并 (内积 )和外微分运算 ,并依照 Poincare定理论证电荷的运动规律可确定电磁场的运动规
By estimating the koppelman kernel on Complex Manifolds, the difference between the koppelman kernel on complex manifolds and the Bochner Martinelli koppelman on C n was obtained;and then by utilizing the koppelman formula and the result as above, the jump formula of differential forms under Berndtsson transform on Complex manifolds was derived.
引入复流形上的Koppelm an 核与微分形式的Berndtsson 变换, 并对复流上的Koppelm an 核进行估算,得出其与Cn 空间的Bochner-Martinelli-Koppelm an 核之差为O(- 2n +1n )。
By the natural and harmonious relationship between differential forms and differential equations and between differential forms and vector analysis, we discuss the properties, which are covariant under the transformation of coordinates in the framework of differential forms, of particle motion in a central force field.
通过微分形式与微分方程和向量分析之间存在的自然而协调的关系,在微分形式框架下讨论了质点在有心力场中运动的特性并得出在坐标变换下其均是协变的
The Hypo-elliptic Differential Forms on Smooth Manifolds;
光滑流形上微分形式的亚椭圆性
Let X be a smooth oriented Riemannian n-manifold without boundary,l-form W be WT2 class of differential forms on X.
令X是一个光滑可定向的n维无边黎曼流形,l-形式W是X上的WT2类微分形式,如果它的结构常数v1、v2满足一定的条件,则对于dφ=ω的l-1-1形式φ的模满足Holder连续性。
alternating differential of differential form
微分形式的交错微分
On Poincaré Inequality for Differential Forms
关于微分形式的Poincaré不等式
The Application of the Invariance of Total Differential Forms in the Differential Calculus for Function of Several Variables;
一阶全微分形式不变性在多元微分学中的应用
Local and Globle Two-Weight Integral Inequalities for Differential Forms;
微分形式的局部和全局双权积分不等式
WT_2-class Differential Forms Holder Continuous
WT_2类微分形式的Holder连续性
The Expansions of Conservation Laws and Symmetries for a PDE(s) and Applications of Differential Form Wu s Method;
偏微分方程(组)对称和守恒律的扩充及微分形式吴方法的应用
A DISCUSSION ON POTENTIAL SYMMETRIES AND INVARIANT SOLUTIONS OF SOME PARTIAL DIFFERENTIAL EQUATIONS BY USING WU'S METHOD IN DIFFERENTIAL FORMS
用微分形式的吴方法求解一些偏微分方程的势对称和不变解
On the invariability in perfect differentials in the derivation of variable function;
全微分形式不变性在多元函数求导中的作用
The Inequality Forms of the Mean Value Theorem of Differential and Its Application
微分中值定理的不等式形式及其应用
Very general systems of differential equations can be reduced to the normal form.
形式很普通的微分方程组可以化为正规的形式。
The Application of the Invariance of First Order Differential Forms in the Differential Calculus for Function of One Variable;
一阶微分的形式不变性在一元微分学中的应用
Research of Chinese Intellectuals' Political Participation
中国知识分子政治参与形式变化探微
Ray equation is derived from Fermat's principle in variation form.
本文由费马原理的变分形式,导出光线微分方程。
Integral Forms for Two Classes of Two-Order Differential Equations with Variable Coefficients
两类二阶线性变系数微分方程的可积形式
Research on Applicator Forms and Thermal-field Distributions for Microwave Hyperthermia;
微波热疗中辐射器形式和热场分布的研究
The Application of Normal Form and I-method in the Partial Differential Equations;
法形式及I-方法在偏微分方程中的应用
Unified Demonstration and Generalization of Intermediate Value Formula in Infinitesimal Calculus;
微积分中值定理的统一证明及推广形式
A Deducation of Special Solution forms for Non-Homogeneous Ordinal Differential Equations with Constant Coefficients;
非齐次常系数常微分方程特解形式的一个推导