Then making use of the properties of local complete Hermitian matrix and the relation between principal submatrices of the invertible matrix and its Schur complements, we obtain a matrix inequality for the Hadamard product of two local complete Hermitian matrices.
本文研究了两个经典的Hermitian正定矩阵的Hadamard乘积的Bapat-Kwong矩阵不等式的推广,利用局部完全Hermitian矩阵的性质,根据可逆矩阵的主子矩阵与其Schur补的关系,得到了两个局部完全Hermitian矩阵的Hadamard乘积的矩阵不等式。
In this paper,the lifting problems in the sequence spaces l~p(E_i) and ces_p(E) are discussed,and it is proved that: (1) Geometric property (C-K)(K=Ⅰ,Ⅱ ,Ⅲ)can be lifted to sequence spaces (l~p(E_i)) and ces_p(E), (2) One necessary and sufficient condition for sequence spaces ces_p(E) to be CLwR spaces (resp.
讨论了(C-K)(K=Ⅰ,Ⅱ,Ⅲ)性质在两类序列空间lp(Ei)和cesp(E)中的提升问题,证明了(C-K)(K=Ⅰ,Ⅱ,Ⅲ)性质可以提升到lp(Ei)和cesp(E),并给出了cesp(E)(1