The relations of integrable uniformly absolutely antinuous function sequences,uniformly conve -rgent function sequences and uniformly integrable function sequences are studied.
研究了积分一致绝对连续的函数列与一致收敛的函数列及一致可积函数列之间的关系,并证明了积分一致绝对连续的函数列的一个充要条件。
For weighted sums of the form k nj=1a nj d jX,where{a nj ,1≤j≤k n↑∞} is a real constants array and {d nX,n≥1} is martingale difference series,we establish the relationship between the convergence and the p\|smoothable Banach space under the condition of {a nj }\|uniform integrability,andwe get the strong law of large numbers for weighted sums of martigale difference series.
对形如 knj=1anjdj X的加权和 ,其中 { dn X ,n≥ 1}为 B值鞅差序列 ,{ anj}为实值常数阵列 ,在{‖ dj X‖ p关于 { | anj| p }一致可积的条件下建立鞅差序列加权和的收敛性与 Banach空间 p光滑性的关系 ,并给出p光滑 Banach空间中鞅差序列加权和的强大数定
On this basis the necessary and sufficient conditions to the uniform integrability of sequences of fuzzy valued functions were given,and the implication relations between uniform integrability of sequences of fuzzy valued functions and the uniformly boundedness of the their fuzzy valued integrals were studied.
通过引入新乘法算子,针对模糊值函数定义了-模糊值积分,在此基础上给出了模糊值函数序列一致可积的充要条件,并研究了模糊值函数序列一致可积与其模糊值积分一致有界的蕴涵关系。