您的位置:汉字大全 > 行业英语 > 数学 > regular set function是什么意思

regular set function是什么意思

中文翻译正则集函数

网络释义

1)regular set function,正则集函数2)regular functions,正则函数3)regular function,正则函数4)monogenic function,正则函数5)Regularization function,正则化函数6)hypermonogenic function,超正则函数

用法例句

    By introducing quaternion regular functions,two necessary and sufficient conditions of quaternionic Left-regular(or right-regular) functions in terms of exterior differential were given.

    运用已定义的正则函数,从外微分的角度,给出四元数函数左(右)正则的2个充要条件。

    Hence,the results of bounded regular functions have been given from special to general.

    讨论复数域上有界正则函数的导数估计问题(上界问题),利用有界函数的性质、最大模原理及归纳法,得到有界正则函数及正则正实部函数五阶导数估计式,并由此得到有界正则函数的n阶导数估计式,并推断出正则的正实部函数的阶导数估计式,从而将有界函数的导数估计从特殊推广到一般。

    In this paper,the vector-valued regular functions are extended to the locally convex space.

    把向量值正则函数推广到了局部凸空间中,得到了局部凸空间中向量值正则函数的柯西积分定理、柯西积分公式、惟一性定理、最大模原理、刘维尔定量、许瓦兹引理、柯西阿达玛定理、罗朗定理。

    The Boundary Value Problem for Regular Functions on Unbounded Domains in Real Clifford Analysis;

    Clifford分析中无界域上正则函数的边值问题

    In this paper,the vector-valued regular functions are extended to the locally convex space.

    把向量值正则函数推广到了局部凸空间,得到了局部凸空间中向量值正则函数在s(0,1)的有界性,同时,把有界变差函数及Riemann-Stieltjes积分推广到了局部凸空间。

    Properties of Sequence of Monogenic Function and Hypermonogenic Function in the Real Clifford Analysis;

    实Clifford分析中正则函数列及超正则函数列的性质

    Resorting to the convergent theorem of sequence of the analytic function, we define the uniform bound ,inner closed uniform bound and inner closed uniform convergence of the monogenic function in the real Clifford analysis.

    在解析函数列的收敛性定理的基础上 ,定义了实 Clifford分析中正则函数列的一致有界、内闭一致有界及内闭一致收敛等概念 ,并讨论了正则函数列的几条性质 。

    Properties of sequence and space of hypermonogenic functions in real Clifford analysis;

    实Clifford分析中超正则函数列和函数空间的性质

    In this paper, we study the solutions of the Dirac-Hodege equation, which are called hypermonogenic functions.

    本文研究了Dirac-Hodge方程的超正则函数解。

    In recent years,hypermonogenic function has been systematically studied.

    超正则函数是复分析中解析函数的一种推广形式。

    K-regular Functions in Clifford Analysis;

    Clifford分析中的k-正则函数

    K-hypermonogenic functions and quadratic k-hypermonogenic functions in Clifford analysis

    Clifford分析中的k-超正则函数和二次k-超正则函数

    Properties of k-Hypermonogenic Functions and Their Relative Functions

    k-超正则函数及其相关函数的性质

    On some properties of k-Regular functions and Riemann boundary value problems with conjugate for k-Regular function

    k-正则函数的某些性质及其共轭k-正则函数的Riemann边值问题

    The Properties for Biregular Function in Clifford Analysis;

    Clifford分析中双正则函数的性质

    Riemann-Hilbert Boundary Value Problem of Non-regular Equations;

    正则函数组Riemann-Hilbert边值问题

    Equivalent condition of bihypermonogenic function in real Clifford analysis;

    实Clifford分析中双超正则函数的等价条件

    In Clifford Analysis Riemann Boundary Value Inverse Problemwith Regular Functional Vector;

    实Clifford中正则函数向量的Riemann边值逆问题

    Non-regular Hilbert Boundary Value Problem of Equations;

    正则函数组Hilbert边值问题

    An Equivalent Condition of k-regular Function in Real Clifford Analysis

    实Clifford分析中k-正则函数的等价条件

    The Boundary Value Problem of k-monogenic Functions in Clifford Analysis

    正则函数的Riemann边值问题

    Some Properties for Sequence of Biregular Functions in Real Clifford Analysis

    实Clifford分析中双正则函数列的性质

    The Properties of Hypermonogenic Functions in Clifford Analysis

    Clifford分析中超正则函数的一些性质

    Maximum Modulus Principle for Biregular Functions in Real Clifford Analysis

    实Clifford分析中双正则函数的最大模原理

    Some Boundary Value Problems for HyperMonogenic Functions and Generalized Regular Functions in Clifford Analysis;

    Clifford分析中广义正则和超正则函数的某些边值问题

    The Properties of Quasi-Cauchy Type Integral of Hypermonogenic Functions in Clifford Analysis;

    Clifford分析中超正则函数的拟Cauchy型积分的性质

    The Boundary Value Problem for Regular Functions on Unbounded Domains in Real Clifford Analysis;

    Clifford分析中无界域上正则函数的边值问题

    Normalities Invole Shared Functions and Omitted Functions

    涉及分担函数和例外函数的正规定则

Copyright © 2022-2024 汉字大全www.hanzidaquan.com All Rights Reserved 浙ICP备20019715号