The calculation of the sum of squares of deviation from average in analysis of covariance is complex and difficult.
针对协方差分析中离均差乘积和的计算方法较为复杂这一难点,根据大多数人掌握在具有统计功能的计算器或计算机中计算相关系数比较便利的特点,应用协方差分析中离均差乘积和的计算公式与积差相关系数的计算公式的相同部分,利用代入法和换算法推导出新的离均差乘积和的计算公式。
The corresponding coefficient of deviation mean Φp and transcendental probability P are evaluated under different skewness coefficient Cs by deducing Pearson Type Ⅲ probability density distribution function according to the requirement of Military Specification Airplane Strength and Rigidity.
本文按军用飞机强度和刚度规范中规定的要求,通过对皮尔逊Ⅲ型概率密度分布函数的推导,完成了在不同偏态系数Cs下的离均系数Φp和超越概率P的对应数值编程计算,并得到了相应的计算结果。
The paper uses the game theory to get an incentive value in a pure strategy of a balanced refining Bayesian separating equilibrium and to confirm the actual type of the channel with the incentive value in order to select the correct channel.
利用博弈论的知识获取了纯策略精炼贝叶斯均衡下的分离均衡出现时的激励值,通过该激励值确定了渠道商的实际类型,为企业选取正确的渠道商提供了参考,具有一定的指导意义。
Because of converse selection caused by in- formation asymmetry in M&A market,the M&A will appear the following three different market equilibriums, namely separating equilibrium,pooling equilibrium,semi-separating equilibrium,only separating equilibrium is the most ideal and efficient equilibrium.
由于企业并购双方信息不对称性所导致的逆向选择,企业并购市场会出现分离均衡、混同均衡和准分离均衡三种状态,其中只有分离均衡是最理想和最有效率的均衡。
Here I mainly analysis the process of Signaling Game of pricing for merge and acquisition, and lodge the separating equilibrium, the pooling equilibrium, the semi-separating equilibrium that using theory of signing Game.
主要分析了并购定价的信号博弈过程,并利用信号博弈分析了并购定价博弈的分离均衡、混同均衡、准分离均衡,同时还考虑了后验信念调整的具体情况。
In this paper,we take the FDI and export as signals to deduce the conditions of pooling equilibrium and separate equilibrium under the uncertainty of the cost type,and the propositons infer that as the condition of the separate equilibrium is binding,bilateral firm can hold the equilib.
文章以FDI和出口贸易作为信号推证了在成本类型不确定条件下混同均衡和分离均衡存在的条件;文章的推论表明如果分离均衡条件满足,双边企业可以获得完全信息条件下的均衡产出,如果混同均衡条件满足,双方则将按照不完全信息博弈规则选择古诺纳什产出。
Copyright © 2022-2024 汉字大全www.hanzidaquan.com All Rights Reserved 浙ICP备20019715号