According to the foundational properties of the random errors, how to choice a reasonable smoothing parameter and regularizer matrix is studied.
利用罚最小二乘原理构造加权惩罚平方和,将半参数回归模型与最小二乘配置结合起来,来处理GPS高程问题,导出了配置型模型中正规化矩阵正定时参数平差的计算方法,用直接法得到了参数和信号的估计量,给出了相应的公式。
Several equivalent conditions of a normal matrix
正规矩阵若干判定及性质
The factorization of a complex skew-symmetric normal matrix,which is similar to a complex symmetric normal matrix,was demonstrated using a logically similar method.
提出一个复矩阵是对称酉矩阵的充要条件,并用逻辑上类似的方法证明一个类似于复对称正规矩阵的复斜对称正规矩阵的分解,最后对复斜对称矩阵得到了类似于复对称矩阵Takagi分解的结论。
The eigenvalues of a normal matrix are not sensitive to its elements perturbation.
基于正规矩阵特征值对其元素变化的不敏感性,讨论线性系统极点的正规配置问题,即设计状态反馈控制律,将闭环控制系统极点配置到期望位置的同时使闭环状态矩阵为正规矩阵,从而达到增强控制系统的鲁棒性的目的。
Several Sufficient Prerequisites for the Actual Number Regular Matrix Definite;
实正规矩阵正定的判定条件
In this paper, we get several properties about this kind of matrix including three adequate conditions and two contract forms according to the important properties of regular matrix and exchangeable matrix.
利用正规矩阵和乘积可交换矩阵的重要性质 ,给出了亚正定矩阵的三个充分条件以及其合同矩阵的两个分解形式 。
Generalized positive definite matrices and normal matrices;
广义正定矩阵和正规矩阵
The problem of best approximating, a given square complex matrix in the Frobenius norm by normal matrices under a given spectral restriction is considered.
考虑在给定谱约束和Frobenius范数意义下用正规矩阵最佳逼近一个给定复方阵的问题。
By using a kind of decomposition of complex normal matrix and Gersgorin disc theorem,the classical Greub-Rheinboldt inequality on the case of positive definite Hermite matrix and the classical Courant-Fisher theorem on the case of Hermite matrix are improved to the case of the complex normal matrix,so two results can be obtained on the complex normal matrix.
利用复正规矩阵的一个分解和Gersgorin圆盘定理等工具将经典的关于正定Hermite矩阵的Greub-Rheinboldt不等式和关于Hermite矩阵的Courant-Fisher定理推广到复正规矩阵的情形,得到了关于复正规矩阵的两个结论。
And the classical Courant-Fisher theorem is applied to the complex normal matrix by using a kind of decomposition of complex normal matrices.
将一类特殊复正规矩阵的特征值问题转化为一般的复正规矩阵的相应问题,利用复正规矩阵的一个分解将经典的Courant-F isher定理推广到这类复正规矩阵上。
We shall also point the condition that matrix power series is normal.
另外又指出矩阵幂级数是正规矩阵的条件。
The ~*Congruence Class of the Solutions of Matrix Equations and Generalized Inverses of a Normal Matrix;
矩阵方程的合同类解与正规矩阵的广义逆
Research on Normal Matrix Methodology of Attitude Control for Spacecraft
航天器姿态控制的正规矩阵方法研究
Courant-Fisher Theorem on a Kind of Special Complex Normal Matrix
关于一类特殊复正规矩阵的Courant-Fisher定理
Polar Decomposition and Decomposition of H-normal Matrices with Indefinite Inner Product;
不定内积下H—正规矩阵的分解及其H—极分解
Feedback Perturbation Based Normal Matrix Approach for Spacecraft Attitude Control
基于反馈摄动的航天器姿态正规矩阵控制
Simultaneous diagonalization of two quaternion normal matrices
2个四元数正规矩阵的同时对角化问题
Stability of Normal Matrix and a Method to Estimate the Eigenvalue of the Matrix
正规矩阵的稳定性及其特征值的估值方法
A Study of Some Kinds of Normal(Sub-normal) Matrix and Its Existence Form
几类正规(次正规)矩阵存在形式探讨
Note that not all matrixes can be inverted, but in normal use this should not be a problem.
注意:不是所有的矩阵有逆矩阵,但正规使用应该不成问题。
A Modified BFGS Method Uses in an SQP Algorithm;
序列二次规划中迭代矩阵的正定性研究
Non-negative matrices and positive definite matries over a C~*-algebra;
C~*-代数上的非负矩阵与正定矩阵
Symmetric Positive Definite Matrices and the Determining Criterions for Non-singular GM-matrices
对称正定矩阵与非奇异GM-矩阵的判定
On the Matrix Inequalitiy for the Hadamard Product of Positive Semidefinite Matrices
关于半正定矩阵Hadamard积的矩阵不等式
This is standard matrix theory.
这是规范的矩阵理论。
matrix large scale integration
矩阵型大规模集成电路
The Kronecker Product of Generalized Normal Matrices;
广义规范矩阵的Kronecker积
Hadamard Inequality of Positive Definite Matrix;
正定矩阵的Hadamard不等式