It is proved that they have regular homeomorphic properties and topological properties,and that T rci separation is equivalent to separation Ti in semi-regularization of LF topological spaces.
利用正则闭集概念在LF拓扑空间中引入了正则闭分离性Tirc(i=1,2)概念,给出了它们的刻画,证明了正则闭Tirc(i=1,2)分离性为正则同胚性质和拓扑性质,在LF拓扑空间的半正则化中Tirc分离性与Ti分离性是等价的。
It is proved that they are topological properties and that they are equivalent to the regular(normal) separation in semi-regularization.
利用正则闭集概念在LF拓扑空间中引入RC-正则(正规)分离性概念,给出了它们的刻画,并利用广义Zadeh型函数证明了它们是LF拓扑性质,在LF拓扑空间的半正则化中RC-正则(正规)分离性与正则(正规)分离性是等价的。
It is proved that they are LF topological properties and that they are equivalent to the strong T separation in semi-regularization.
利用正则闭集概念在LF拓扑空间中引入了强正则闭分离性(分离性)概念,给出了它们的刻画,并证明了它们是LF拓扑性质,在LF拓扑空间的半正则化中的强正则闭分离性与加强了的T分离性是等价的。