This paper presents a solution to the problem of the reparametrization of B-spline curves by the sine transformation of B-spline basis.
从B样条基函数出发,导出了正弦B样条类SBSC(Sine Basic Spline Class)函数,定义了SBSC曲线,讨论了SBSC曲线和B样条曲线的关系,提供了B样条曲线重新参数化的一种有效方法。
With the help of previous work,this paper investigates the affection of reparametrization on the convergence condition for the hybrid polynomial approximation.
在前人工作的基础上研究了重新参数化对有理Bézier曲线hybrid逼近收敛性的影响,在权系数的某些假定下,得到了重新参数化后hybrid逼近收敛的充分条件。
And we propose the solution of reparametrization to t.
针对两条参数样条曲线在参数连续性下拼接以后,在连接处产生的尖点或二重点等曲线不光滑问题,给出了一种重新参数化的解决方法。