H ∞Based Double Filtering Algorithm on Integrated GPS/SINS Navigation System;
基于H∞的双滤波算法在GPS/SINS组合导航系统中的研究
The performances of various control theories (linear state feedback,PI and H ∞) to control the test apparatus are compared and evaluated.
对其实验装置所用的各种控制理论 (线性状态反馈控制、PI控制和 H∞ 控制 )在起动、定位、稳定、响应速度、抗干扰以及鲁棒性等方面的执行情况作了比较和评价 ,给出了结
In order to explore the structural perturbations boundary of object and simplify the process of adjusting the PID parameters,the structured perturbations boundary is determined when a controller can make a nominal object stable and also make the perturbations object with structural perturbations stable via the theory of H_∞and Youla parametrization.
为了探讨被控对象的结构误差范围,简化调节PID参数过程,利用H∞和Youla参数化理论,给出了当控制器使标称模型稳定而标称模型存在结构误差的情况下,控制器仍然可以使摄动对象也稳定时的结构误差范围的计算方法,计算了被控对象分别是单变量系统和多变量系统时,结构误差的范围。
The original control problem was converted to a standard H_∞ problem.
利用回路整形和内模原理方法,选取合理频率域加权函数,结合实际被控对象状态空间模型,得到某广义被控对象状态空间模型,将原控制要求问题转化为标准H∞控制问题。
A new seminorm and it s property for persistent signal robust H_∞ control;
通过引入新的范数解决了瞬时信号鲁棒H∞控制理论向持续信号鲁棒H∞控制推广过程中A半范定义的信号空间是非线性空间问题。
For state estimation problem about a kind of uncertain linear systems, a new satisfactory estimator is constructed with satisfactory control theory, which can guarantee that estimation error system with bounded perturbed model parameter is under constraints of regional pole index, estimation error stable variance index and H-infinite index.
根据满意控制思想 ,针对一类不确定线性系统的状态估计 ,设计一种满意估计器 ,使预测误差系统在模型参数有界摄动时 ,依然同时满足区域极点指标约束、预测误差稳态方差指标约束和H∞ 指标约束 。
AnH-infinity variable universe fuzzy controller was presented for a class of single-input-single-output nonlinear systems with an unknown hysteresis nonlinearity represented by the Preisach model.
设计了一个H∞变论域模糊控制器,用于控制一类单输入单输出的基于Preisach模型的未知迟滞非线性系统。
Regional pole index for the (periodic) estimation error system is brought up through lifting technique and the other indices of steady state error covariance and (H-infinity) for the periodic error systems are required at the same time.
针对线性离散周期系统的状态估计问题,运用提升原理提取期望极点指标,同时期望估计误差系统满足稳态误差方差/H∞混合指标,采用代数Riccati矩阵不等式法与数值递推算法对误差系统进行了上述指标的满意估计设计,并根据满意控制的基本理论将上述满意估计问题转化为线性矩阵不等式(LMI)的线性规划问题,从而运用LMI技术求解并设计了可行的满意估计,数值算例验证了相关算法。