您的位置:汉字大全 > 行业英语 > 机械 > orthogonal curvilinear coordinates是什么意思

orthogonal curvilinear coordinates是什么意思

中文翻译正交曲线坐标

网络释义

1)orthogonal curvilinear coordinates,正交曲线坐标2)orthogonal curvilinear coordinate,正交曲线坐标3)orthogonal curvilinear coordinate system,正交曲线坐标系4)non-orthogonal curvilinear coordinate,非正交曲线坐标5)non-orthogonal curvilinear coordinates,非正交曲线坐标6)orthogonal curvilinear coordinates,正交曲线坐标系

用法例句

    Numerical solution of 2-D tidal flow of the estuary in orthogonal curvilinear coordinates;

    正交曲线坐标下河口二维潮流过程计算

    By introducing reasonable fundamental assumptions and the Green strain in orthogonal curvilinear coordinates,geometric equations expressed by the Green strain tensor for solving thin shells with large deformation are derived in this paper.

    正交曲线坐标下的格林应变张量引入到薄壳大变形分析,通过建立恰当的基本假设,直接导出了用格林应变张量表示的壳体变形几何方程,将该方程代入到本构方程,由能量原理得到了小应变非线性变形平衡方程、内力方程和边界条件,在此基础上提出了大应变变形的简化分析方法。

    By defining “generalized velocities” and “generalized accelerations”, velocities and accelerations in orthogonal curvilinear coordinates are obtained.

    引入“广义速度”和“广义加速度”的概念,把正交曲线坐标系中的速度和加速度简化为对广义坐标及其微商的偏导。

    This paper derives the expression of speed and acceleration in orthogonal curvilinear coordinate by using elementary geometry and infinitesimal calculus knowledge and gave the specific expression in cylindrical coordinate system and spherical coordinate system.

    本文利用初等几何、偏微分知识推导正交曲线坐标系下,速度和加速度的表达式。

    The solution of acceleration in orthogonal curvilinear coordinate system through resultant motion;

    正交曲线坐标系中加速度的合成运动求法

    The equations of wave propagation in piezoelectric cylindrical bent rods were established in an orthogonal curvilinear coordinate system (r,s).

    通过在正交曲线坐标系中建立弹性波在压电圆柱曲杆中传播的控制方程,结合给定的侧面边界条件,求得波在压电圆柱曲杆中传播的前三阶频散关系和位移与电势在横截面上的分布情况。

    Simulation of 2-D cooling water in non-orthogonal curvilinear coordinate;

    正交曲线坐标系平面二维电厂温排水模拟

    For analyzing the influence of Xin andu bridge on flood control,the paper builds a 2-D non-orthogonal curvilinear coordinate flow mathematical model which applied to the Lunhe River.

    沦河上修建桥梁必然会对河道水位和流态产生影响,为了分析辛安渡大桥对沦河的防洪影响情况,建立了非正交曲线坐标下平面二维水流数学模型,并应用该模型对沦河修建辛安渡大桥前后的水流情况进行了模拟。

    Through applying a numerical model of plane river flow in non-orthogonal curvilinear coordinate in the simulation of 2-D flow near the groyne,the shortcomings of orthogonal curvilinear coordinate in simulation of local places with irregular boundaries are successfully avoided.

    将非正交曲线坐标系下的平面二维河道水流数学模型应用于丁坝绕流计算,克服了正交网格在对不规则边界进行局部模拟时存在的一些缺陷。

    3-D turbulent model of meandering river in non-orthogonal curvilinear coordinates;

    正交曲线坐标下三维弯曲河流湍流数学模型

    The 3-D RNG k-ε turbulence hydrodynamic model in non-orthogonal curvilinear coordinates is established in this paper.

    本文采用非正交曲线坐标下的三维RNG k-ε双方程湍流数学模型,该模型在水平方向采用非正交曲线坐标,在垂直方向采用等分网格的全坐标变换,采用由二维深度平均方程演化而来的2-D泊松方程计算三维自由水面,应用SIMPLEC程式求解方程。

    When the Lame coefficient and unit vector which characterize the strain tensor of Cartesian coordinates are given anew and substituted into orthogonal curvilinear coordinates it is found that the strain tensor in Cartesian coordinates is the function of Lame coefficient and unit vector.

    将表征笛卡儿坐标系度量张量的拉梅系数与单位向量重新赋予后,代入正交曲线坐标系中,发现笛卡儿坐标系的应变张量为其拉梅系数与单位向量的函数。

    By matrices and a derivative formula,a simple method of deriving accelerations in orthogonal curvilinear coordinates based on variable transformation is proposed.

    利用矩阵和一个微商公式,把变量替换法求正交曲线坐标系中加速度运算的繁琐程度大为降低。

    In this paper,the direct method of vector differentiation in orthogonal curvilinear coordinates is improved,based on the ideas of H·T·Yang and others.

    本文在H·T·Yang等人的基础上,进一步完善了正交曲线坐标系中矢量微分的直接方法。

    Research on Boussinesq Equations in Curvilinear Orthogonal Coordinate System;

    正交曲线坐标下波浪Boussinesq方程研究

    Matrix Expressions on Orthogonal Bases under Lorentz Transformation;

    任意正交曲线坐标基矢洛仑兹变换的矩阵表示

    The Transformation of Two-Dimensional Shallow Water Equations under Orthogonal Curvilinear Coordinates

    正交曲线坐标系下二维浅水方程的变换

    Viscous gasdynarnical equations for flow surface are built too in holf othogonal corvilinear coordinates.

    建立了半正交曲线坐标系中的流面粘性气动力学方程组。

    STRAIN ANALYSIS IN ORTHOGONAL CURVILINEAR CO ORDINATES SYSTEM AND ITS APPLICATIONS TO ELASTIC THIN SHELL

    正交曲线坐标中的应变分析及其在薄壳中的应用(学习心得)

    BASIC AERODYNAMIC EQUATIONS EXPRESSED BY PARTIAL DERIVATIVES ALONG AN ARBITRARY STREAM SURFACE IN SEMI-ORTHOGONAL CURVILINEAR COORDINATE SYSTEM

    正交曲线坐标系中沿任意流面的气动力学基本方程

    Research on 2D Numerical Simulation of Flow with Complex Boundaries in Orthonormal Curvilinear Coordinates;

    正交曲线坐标系下复杂边界二维水流数值模拟研究

    Derivation of Galilean Transformation on Velocities and Accelerations in Vertical curve Coordinates by Means of Matrix;

    伽利略变换下正交曲线坐标系中速度和加速度的矩阵表示

    They form a three-parametric, orthogonal net and may be chosen as coordinate lines of a special, curvilinear coordinate system.

    它们形成三参数正交网,可以把它们选作特殊曲线坐标系的坐标线。

    The point at which a line, or the curve in which a surface, intersects a coordinate plane.

    交点,交线线与坐标平面相交的点或一表面与坐标平面相交的曲线

    "If the horizontal line does intersect this cure, draw a vertical line from the intersection to the abscissa."

    若水平线的确与此曲线相交,就从此交点向横坐标画一条垂直线

    Modification of 2D shallow water and water quality model in curvilinear coordinates

    曲线坐标系下平面二维水流水质模型的修正

    It presents the rigorous method to calculate the intersecting point coordinate of the straight line with the parallel to the easement curve.

    提出了计算直线与缓和曲线平行线交点坐标的严密方法。

    The distance from the origin to the point at which a line, curve, or surface intersects a coordinate axis.

    截距从原点到一条直线、曲线或平面上的点的距离,与坐标轴相交

    A calculating formula for surface integrals under orthogonal transformation of space coordinates is given.

    给出曲面积分在空间坐标的正交变换下的一个计算公式.

    Existing Railway Curve Realignment Constrained Optimization Algorithm Research Based on Coordinates

    基于坐标的既有铁路曲线整正约束优化算法研究

    Curve Coordinate Calculation of the Nonsymmetric Basic Type Across Routes;

    路线中的非对称基本型曲线坐标计算

    Omega hyperbolic grid system

    奥米加双曲线网格坐标系

Copyright © 2022-2024 汉字大全www.hanzidaquan.com All Rights Reserved 浙ICP备20019715号