您的位置:汉字大全 > 行业英语 > 数学 > canonical system of differential equations是什么意思

canonical system of differential equations是什么意思

中文翻译标准微分方程组

网络释义

1)canonical system of differential equations,标准微分方程组2)canonical differential equation,标准微分方程3)differential equations,微分方程组4)differential equation group,微分方程组5)differential systems,微分方程组6)system of differential equations,微分方程组

用法例句

    The particular solutions to one kind of systems of second order differential equations with constant coefficients;

    一类二阶常微分方程组的特解公式

    The numerical solution of chromosome-function was applied for a lot of first order differential equations for the chamber on the projectile in bore of a gun.

    利用染色函数解法求解膛内弹上气室气流的一阶非线性分段微分方程组,进行了大量的数值试验,证实数值解是收敛的,也是稳定的。

    According to the source characteristics and the desired illumination on the target plane,a set of differential equations were detruded based on the existing theoretical model by using the solid coordinate system and the energy conservation theory.

    根据已知的光源发光特性和所需实现的照明面上的光分布,基于理论模型,结合立体坐标系和能量守恒定理,推导得到微分方程组。

    Getting the solutions to differential equation group is very difficult and complex.

    关于微分方程组求解问题,是很困难和很复杂的事。

    The application of linear differential equation group is rather widespread in many domains,such as physics chemistry and so on.

    线性微分方程组在物理、化学等领域的应用相当广泛,线性微分方程组的求解就显得相当重要了。

    おn this paper,the oscillation of the solutions of the neutral nonlinear differential systems with positive and negative coefficient is discussed.

    应用具有正负号系数微分不等式解振动的判别准则,研究了具有正负号中立型非线性微分方程组解的振动性,获得了其解振动的判别准则。

    In this paper,the oscillation criteria for solutions of the variational advanced differential inequalities are used to obtain oscillation criteria of all solution of the linear variational advanaced differential system

    本文应用偏差变时超不等式解振动的判别准则,研究了几类线性偏差变时超微分方程组解的振动性,获得了其解振动的判别准则。

    In partial ordering Banach Space,the existence and uniqueness of solutions for some classes of initial value problems for system of differential equations are discussed.

    在一般序Banach空间中对一类微分方程组的初值问题进行了探讨,利用较简捷的条件,得出方程组的唯一解,及其迭代逼近式、误差估计式。

    characteristic equation of differential equation system

    微分方程组的特征方程

    nonhomogeneous linear system of differential equations

    非齐次线性微分方程组

    This is called a normal system of differential equations.

    这称为正规微分方程组

    Particular Solution for a Class Riccati Equation on System of Differential Equations of First Order

    用一阶微分方程组求Riccati方程的特解

    On the Numerical Hopf Bifurcations for Delay Differential Equations;

    时滞微分方程组的数值Hopf分支分析

    Basic Finite Element Water-Hammer Partial Differential Equations Numerical Simulation and Inversion;

    水锤偏微分方程组有限元方法正反演

    A Feature Analysis of Numerical Solution for Partial Differential Equations;

    微分方程组数值解奇异性特征分析

    L~p-STABILITY OF A CLASS NONLINEAR FRACTIONAL DIFFERENTIAL EQUATIONS

    一类分数阶微分方程组的L~p稳定性

    Differential Operator Method in Solving the Group of Constant-coefficient Non-homogeneous Liner Differential Equations

    常系数非齐次线性微分方程组的微分算子解法

    The Positive Solutions for High-Order Nonlinear Ordinary Differential Systems;

    高阶非线性常微分方程组的正解问题

    Applications of Nevanlinna Theory in the Systems of Complex Differential Equations;

    Nevanlinna理论在复微分方程组中的应用

    Researches on the Solutions of One Type of Systems of Higher-order Complex Differential Equations;

    关于一类高阶复微分方程组解的研究

    Existence of Positive Solutions of Boundary Value Problems for Systems of Ordinary Differential Equations;

    微分方程组边值问题正解的存在性

    Inversing the Linear Homogeneous Differential Equation System by Drazin;

    用Drazin逆解线性齐次微分方程组

    A Way of Constant Coefficient Homogeneous Linear Differential Equations;

    常系数齐线性微分方程组的一种解法

    A solution method for certain differential equations with constant coefficients;

    带常系数某类微分方程组的一种解法

    The structure theorem of solution of the system of differential equation (dX)/(dt) = AX;

    微分方程组(dX)/(dt)=AX解的结构定理

    overdetermined system of partial differential equations

    偏微分方程的超定组

Copyright © 2022-2024 汉字大全www.hanzidaquan.com All Rights Reserved 浙ICP备20019715号